For more than 75 years, Kaydon Filtration has been an expert at providing state-of-the-art filtration technology for lube oil, hydraulic oil, diesel fuel, and other hydrocarbon fluids. The multi-layered design of our filter elements delivers exceptional particle retention and extended element life. Our filtration, coalescer, and water-absorbing elements are designed to help meet the expected fuel life while combining performance and cost effectiveness.

Take a look at Kaydon’s elements to learn how they can work in your application:

- **TURBO-TOC**® turbine oil conditioning systems utilize a unique set of filter elements to treat particulate and water contamination.

- **KAYMAX**® filtration elements use an inert, fixed pore, impregnated fiber matrix media for maximum strength and increased dirt capacity.

- **KAYFLO**™ (KF) filter elements are used for general purpose and Model KB filter elements are used for basic purpose industrial oil and fuel applications.

- **KAYDRI**® (KQD) water removal filter elements are designed to remove water, by using absorption, from lube oil, hydraulic oil, and diesel fuel.

- **PulseShield**™ Hydraulic Fluid Filters provide increased dirt-holding capacity by as much as 30% in comparison to conventional filter elements.

- The Model KM 7500 filter elements are used for critical industrial oil and fuel applications.

- The Model CI coalescer elements are used with HF-FC series portable oil filtration carts for water separation and filtration of diesel fuels.

- Kaydon Fuel Filter Element Separators are designed and constructed with special hydrophobic materials to provide a barrier to water coalesced with Kaydon Filtration CI coalescer elements.
TURBO-TOC® turbine oil conditioning elements are used exclusively with TURBO-TOC Turbine Oil Conditioning systems. They are designed and constructed to produce exceptionally clean and dry turbine oil. Used with the TURBO-TOC system, the combination of Kaydon’s filtration, coalescer, and separator elements provide unmatched particle removal and unsurpassed water removal.

The TURBO-TOC prefilter and postfilter elements’ filtration media uses inert fibers that stay joined with special bonding agents that are not affected in lube oil. The fibers of both elements maintain a fixed pore structure throughout its filtration service life and are configured to create a high surface collection area. The TURBO-TOC coalescer element is designed and constructed with a high surface area, multi-layered fiberglass fibers for high-efficiency water removal. The combined separator and post-filtration element provides water separation properties and final particulate filtration.

Applications

Turbine Oil

Features

Inert inorganic bonded fixed-pore dual phase fibers
Micro-fiberglass medias with uniform pleating
Cost-effective solution for critical oil and fuel filtration applications

Benefits

TURBO-TOC element’s provide exceptional particle removal with efficiencies that meet or surpass stated micron ratings
Higher dirt holding capacity and particle collection
The TURBO-TOC elements deliver high-filtration performance that positively impacts the element life, change-out frequencies, oil cleanliness levels, and equipment reliability

ISO 16889 Tested
Specifications and Details

Terminal Pressure

<table>
<thead>
<tr>
<th>Part #</th>
<th>Type</th>
<th>psid</th>
<th>kg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1100</td>
<td>Filtration</td>
<td>25</td>
<td>1.7</td>
</tr>
<tr>
<td>K2100</td>
<td>Coalescer</td>
<td>15</td>
<td>1.0</td>
</tr>
<tr>
<td>K3100</td>
<td>Separator</td>
<td>15</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Collapse Rating

75 psid / 5.2 bar

Materials of Construction

- Metals: Inner and Outer Spiral Steel Jacket, Teflon coated stainless steel
- Elastomers: Buna-N
- Filter Media: Dual-Phase Micro and Macro Fiberglass Filter Media
- Epoxy: Adhesive

Operating Temperature Range

32° F - 200° F / 0° C - 93° C

Fluid Compatibility

Mineral Based Turbine Oils (ISO 32, 46, and 68)

Weight (approximate)

<table>
<thead>
<tr>
<th>Part #</th>
<th>Type</th>
<th>lbs.</th>
<th>kgs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1100</td>
<td>Filtration</td>
<td>13</td>
<td>5.89</td>
</tr>
<tr>
<td>K2100</td>
<td>Coalescer</td>
<td>9</td>
<td>4.08</td>
</tr>
<tr>
<td>K3100</td>
<td>Separator</td>
<td>8</td>
<td>3.63</td>
</tr>
</tbody>
</table>

Dimensions

<table>
<thead>
<tr>
<th>Part #</th>
<th>Type</th>
<th>Inches D x L</th>
<th>mm D x L</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1100</td>
<td>Filtration</td>
<td>6 x 36</td>
<td>152 x 914</td>
</tr>
<tr>
<td>K2100</td>
<td>Coalescer</td>
<td>6 x 44</td>
<td>152 x 1,118</td>
</tr>
<tr>
<td>K3100</td>
<td>Separator</td>
<td>6 x 28</td>
<td>152 x 711</td>
</tr>
</tbody>
</table>

1. Life cycle costing is the true cost associated with the use of a filter element. It takes into account cleanliness of oil, filter life, change-out frequencies, and operator involvement.

2. Element tested per ISO 16889.

All design specifications are subject to change without notice.